FusionQuery: On-demand Fusion Queries over Multi-source Heterogeneous Data

Junhao Zhu¹, Yuren Mao¹, Lu Chen¹, Congcong Ge¹, Ziheng Wei², Yunjun Gao¹

¹Zhejiang University, ²Wuhan University

Conflicting Data is Everywhere

Fionnuala Sherry

Article Talk

From Wikipedia, the free encyclopedia

This biography of a living person needs additional citations for verification reliable sources. Contentious material about living persons that is up CO Conflicting! be removed immediately, especially if potentially libelous or har Find sources: "Fionnuala Sherry" – news • newspapers • books • s to remove this template message)

Fionnuala Sherry (born 20 September 1962) is an Irish violinist and vor

Together with Norwegian musician Rolf Løyland, she makes up the Celtin Jun Garden, which won the Eurovision Song Contest 1995 with the predominantly instrumental piece "Nocturne".^[1] As part of Secret Garden she has released several successful albums that have made the top 10 of Billboard's new-age charts. In 2010 she released her solo album Songs from Before.

MusicBrainz

Artist information

Sort name: Sherry, Fionnuala

Type: Person

Born: 1960-01-25 (63 years ago)

Area: 🚺 Ireland

Rating *****

Tags

Genres (none)

Other tags (none)

See all tags

External links

Discogs W en: Fionnuala Sherry IIII Wikidata: Q1868188 View all relationships

Conflicting Data is Everywhere

Fionnuala Sherry

Article Talk

From Wikipedia, the free encyclopedia

This biography of a living person needs additional citations for verification reliable sources. Contentious material about living persons that is up CO Conflicting! be removed immediately, especially if potentially libelous or har Find sources: "Fionnuala Sherry" – news • newspapers • books • s to remove this template message)

Fionnuala Sherry (born 20 September 1962) is an Irish violinist and vor

Together with Norwegian musician Rolf Løvland, she makes up the Celtie Jun Garden, which won the Eurovision Song Contest 1995 with the predominantly instrumental piece "Nocturne".^[1] As part of Secret Garden she has released several successful albums that have made the top 10 of Billboard's new-age charts. In 2010 she released her solo album Songs from Before.

Even well-known data providers make mistakes!

MusicBrainz

Artist information

Sort name: Sherry, Fionnuala

Type: Person

Born: 1960-01-25 (63 years ago)

Area: 🛄 Ireland

Rating *****

Tags

Genres (none)

Other tags (none)

See all tags

External links

Discoas W en: Fionnuala Sherry Wikidata: Q1868188 View all relationships

Possible Solution: Data Integration

Interactive Application Example

Many applications (e.g., RAGs) need interactive speed.

5

S

Please generate a table regarding "united states house of representatives elections, 2004 in Ohio", the attributes are ["district", "incumbent", "first elected", "candidates"]. and the values under "district" column are ["Ohio's_1st_congressional_district", "Ohio's_2nd_congressional_district", "Ohio's_3rd_congressional_district"]. The values under other columns are missing, which you should fill in with your knowledge.

)	District	Incumbent	First Elected	Candidates
	Ohio's_1st_congressi onal_district	Steve Chabot (R)	1994	Steve Chabot (R), Emily Johnson (D), Alex Smith (I)
	Ohio's_2nd_congressi onal_district	Rob Portman (R)	1993 (special)	I Rob Portman (R), Sarah Davis (D), James White (I)
	Ohio's_3rd_congressi onal_district	Mike Turner (R)	2002 (special)	Mike Turner (R), Jennifer Lee (D), Robert Green (I)

Table synthesis by ChatGPT

2004 United States House of Representatives Elections in Ohio

Ohio's 1st Congressional District Election, 2004

	Party	Candidate	Votes	%
	Republican	Steve Chabot	173,430	59.83
[Democratic	Greg Harris	116,235	40.10
1	Independent	Rich Stevenson	198	0.07

Ohio's 2nd Congressional District Election, 2004

	Party	Candidate	Votes	%
	Republican	Rob Portman	227,102	71.70
ſ	Democratic	Charles W. Sanders	89,598	28.29
7	Independent	James J. Condit, Jr.	60	0.02

Conflict with data sources

A Better Way: FusionQuery

A Better Way: FusionQuery

Challenge: how to support unified queries across heterogenous data

Key idea: frame heterogeneous query as KG matching

Challenge: how to support unified queries across heterogenous data

Key idea: frame heterogeneous query as KG matching

However, KG matching is slow.

Semantic and structural matching are iteratively performed.

D BFS takes $O(n(V^q + E^q)(V^d + E^d))$.

Challenge: how to support unified queries across heterogenous data

Key idea: frame heterogeneous query as KG matching

However, KG matching is slow.

Semantic and structural matching are iteratively performed.

D BFS takes $O(n(V^q + E^q)(V^d + E^d))$.

Solution: Line Graph Transformation

□ Convert triplets into nodes in a line graph. □ The time complexity is reduced to $O(E^q E^d)$

By line graph transformation, the problem is reduced to sub-problems.

1 Node-level semantic matching

- Nodes in line graphs are represented as embeddings by PLMs (e.g., BERT).
- **\square** Matching is determined by similarity of embeddings (decided by a threshold τ).

② Graph-level structure matching

Leverage efficient off-the-shelf non-attributed graph matching algorithms.

By line graph transformation, the problem is reduced to sub-problems.

1 Node-level semantic matching

- Nodes in line graphs are represented as embeddings by PLM (e.g., BERT).
- **\square** Matching is determined by similarity of embeddings (decided by a threshold τ).

② Graph-level structure matching

Leverage efficient off-the-shelf non-attributed graph matching algorithms.

query-related data is collected, where values from different sources may conflict with each other.

Two key concepts in data fusion (truth discovery)

- **Data veracity** Pr(v): the veracity Pr(v) of a value v is the probability that the value v is a correct result to the query.
- Source trustworthiness Pr(D): the trustworthiness Pr(D) of a data source D is the probability that the source D provides true values for queries.
 A value has higher veracity score if it is provided by a more trustworthy data

source, and vice versa (i.e., two scores are mutually relevant).

Two key concepts in data fusion (truth discovery)

- **Data veracity** Pr(v): the veracity Pr(v) of a value v is the probability that the value v is a correct result to the query. **Goal: find values in query-related data with**
- **Source trustworthiness** Pr(D): the trustworthinest data veracity as query results. is the probability that the source D provides true values for queries.
- A value has higher veracity score if it is provided by a more trustworthy data source, and vice versa (i.e., two scores are mutually relevant).

Two key concepts in data fusion (truth discovery)

- **Data veracity** Pr(v): the veracity Pr(v) of a value v is the probability that the value v is a correct result to the query. **Goal:** find values in query-related data with
- **Source trustworthiness** Pr(D): the trustworthinest data veracity as query results. is the probability that the source D provides true values for queries.
- A value has higher veracity score if it is provided by a more trustworthy data source, and vice versa (i.e., two scores are mutually relevant).

Drawback of existing data fusion methods

□ Require a large amount of data to accurately estimate data veracity scores.

□ However, what we can obtain is only query-related data (small amount).

On-demand data fusion

\Box The data veracity Pr(v) is approximated by its upper bound:

$$\log \Pr(v) \approx \sum_{D \in \mathcal{D}} \Pr(D|v) \log \frac{\Pr(v|D) \Pr(D)}{\Pr(D|v)}$$

$$\Pr(v|D) = \begin{cases} \Pr(D), v \in D\\ 1 - \Pr(D), otherwise \end{cases}$$

\Box The source trustworthiness Pr(D) is incrementally estimated:

$$\Pr(D) = \sum_{v \in Data(Q,D)} \Pr(v) \Pr(D|v) \qquad \Pr(D|v) = \frac{\mathcal{H} \cdot \Pr^{h}(D) + \sum_{\bar{v} \in D_{v}[Q]} \Pr(\bar{v})}{\mathcal{H} + |Data(Q,D)|}$$

Data(Q, D): query-related data, $Pr^{h}(D)$: historical source trustworthiness, \mathcal{H} : the amount of historical query results

FusionQuery: Threshold Update

Threshold τ affects the quality and quantity of query results

 \square A low threshold τ results on a low precision; A high threshold τ results on a low recall.

FusionQuery: Threshold Update

Our solution: automatically adjust τ inspired by meta-learning

 \Box Core idea: Adjust threshold τ by gradient descent.

Goal: find value with highest data veracity \longrightarrow Optimization goal: max Pr(v)

Do a transformation to the condition:

$$\Pr(v) \ge \tau \rightarrow \Pr(v) = \tau + \epsilon_v \ (\epsilon_v \ge 0)$$

Substitute Pr(v) in the estimation of Pr(D) and get the gradient of Pr(D):

$$\nabla_{\tau} \operatorname{Pr}(D) = |Data(Q, D)| + \sum_{v \in Data(Q, D)} \frac{\operatorname{Pr}(v) \cdot D_{v}[Q]}{\mathcal{H} + |Data(Q, D)|}$$

Update τ by the gradient:

$$\tau = \tau - \theta \operatorname{sgn}(\Delta \operatorname{Pr}(D)) \cdot \nabla_{\tau} \operatorname{Pr}(D)$$

Evaluation Setup

Datasets

 Four real-world datasets with heterogenous data types

Datasets	Format	#num.	#ent (avg.)	#rel (avg.)	Query	
	JSON (J)	4	19,701	45,790		
Movie	KG (K)	5	100,229	264,709	210	
	CSV (C)	4	70,276	184,657		
	JSON (J)	3	3,392	2,824		
Book	CSV (C)	3	2,547	1,812	100	
	XML (X)	4	2,054	1,509		
Flight	CSV (C)	10	48,672	100,835	260	
rugni	JSON (J)	10	41,939	89,339	200	
Stock	CSV (C)	10	7,799	11,169	100	
51000	JSON (J)	10	7,759	10,619	100	

Baselines

- **D** Offline batch data fusion methods:
 - ✓ Naïve method: Majority Voter
 - ✓ Iterative methods: TruthFinder, DART
 - ✓ Optimization method: CASE
 - ✓ Probabilistic method: LTM

Adapt them to on-demand data fusion variants

Evaluation: Performance

FusionQuery achieves better accuracy and comparable runtime compare to on-demand data fusion baselines.

																							<u>. – – ,</u>
	!	On-demand data fusion baselines										Batch data fusion baselines										Ours	
Datasets	Types	OL·	-MV	OL-TF		OL-LTM		OL-DART		OL-CASE		QS-MV		QS-TF		QS-LTM		QS-DART		QS-CASE		Fusio	nQuery
	I	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time
	J/K	0.21	0.07	31.7	36.5	13.2	55.1	8.65	2.85	22.6	4.92	1.77	1399	37.1	9717	41.4	1995	43.2	3809	40.4	4900	51.3	2.64
Monie	J/C	0.11	0.13	24.1	38.5	8.01	91.7	4.85	4.32	14.2	5.06	1.72	41.9	41.9	7214	42.9	1884	45.9	3246	42.3	3981	54.0	2.36
MOVIE	K/C	0.09	0.18	24.2	51.3	13.4	118.0	4.30	6.49	14.9	5.99	3.68	1397	37.8	2199	41.2	1576	37.6	2027	39.4	1699	48.3	4.40
	J/K/C	0.13	0.19	44.7	67.5	7.71	201.1	5.76	9.57	21.7	8.80	1.79	1400	36.6	11225	40.8	2346	41.5	5151	42.1	5480	54.3	10.8
	J/C	1.13	0.01	38.3	1.98	18.5	4.06	22.5	0.30	24.7	1.84	7.20	34.8	40.2	1017	42.4	195.3	35.2	165.0	41.3	376.6	62.4	0.47
Book	J/X	0.17	0.01	35.5	2.07	11.1	6.32	26.2	0.35	24.7	1.84	8.89	34.9	35.5	1070	35.6	277.7	36.1	200.1	35.5	377.8	60.0	0.56
DOOK	C/X	0.83	0.01	40.2	0.93	14.0	3.53	32.9	0.25	21.2	1.66	10.0	34.2	43.0	1033	44.1	232.6	42.6	201.4	40.3	811.0	59.6	0.38
	J/C/X	0.13	0.01	42.9	2.51	8.76	8.75	27.2	0.51	40.8	1.96	7.36	35.4	37.3	2304	41.0	413.2	40.4	394.1	40.3	811.0	60.3	1.07
Flight	C/J	0.06	0.32	27.3	6049	21.3	1846	72.3	20.2	12.0	54.5	67.1	1445	-	-	79.1	14786	80.1	73380	-	_	72.9	109.9
Stock	C/J	55.3	0.01	68.4	2.30	28.0	9.25	64.8	0.33	64.8	2.27	21.1	65.4	20.6	5034	16.7	431.0	19.2	1337	17.4	1366	71.6	0.36
		_	_	_	_																		

¹ The symbol "-" denotes that the method fails to finish within 1 day.

Evaluation: Performance

FusionQuery outperforms offline data fusion baselines in both effectiveness and efficiency.

		On-demand data fusion baselines									Batch data fusion baselines										Ours		
D ()	-	On-demand data fus																			<u></u>		
Datasets	Types	OL	-MV	O	OL-TF		OL-LTM		OL-DART		OL-CASE		QS-MV		QS-TF		QS-LTM		DARI	QS-CASE		FusionQuery	
		F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time	F1	Time
	J/K	0.21	0.07	31.7	36.5	13.2	55.1	8.65	2.85	22.6	4.92	1.77	1399	37.1	9717	41.4	1995	43.2	3809	40.4	4900	51.3	2.64
Monie	J/C	0.11	0.13	24.1	38.5	8.01	91.7	4.85	4.32	14.2	5.06	1.72	41.9	41.9	7214	42.9	1884	45.9	3246	42.3	3981	54.0	2.36
MOVIE	K/C	0.09	0.18	24.2	51.3	13.4	118.0	4.30	6.49	14.9	5.99	3.68	1397	37.8	2199	41.2	1576	37.6	2027	39.4	1699	48.3	4.40
	J/K/C	0.13	0.19	44.7	67.5	7.71	201.1	5.76	9.57	21.7	8.80	1.79	1400	36.6	11225	40.8	2346	41.5	5151	42.1	5480	54.3	10.8
	J/C	1.13	0.01	38.3	1.98	18.5	4.06	22.5	0.30	24.7	1.84	7.20	34.8	40.2	1017	42.4	195.3	35.2	165.0	41.3	376.6	62.4	0.47
Book	J/X	0.17	0.01	35.5	2.07	11.1	6.32	26.2	0.35	24.7	1.84	8.89	34.9	35.5	1070	35.6	277.7	36.1	200.1	35.5	377.8	60.0	0.56
DOOK	C/X	0.83	0.01	40.2	0.93	14.0	3.53	32.9	0.25	21.2	1.66	10.0	34.2	43.0	1033	44.1	232.6	42.6	201.4	40.3	811.0	59.6	0.38
	J/C/X	0.13	0.01	42.9	2.51	8.76	8.75	27.2	0.51	40.8	1.96	7.36	35.4	37.3	2304	41.0	413.2	40.4	394.1	40.3	811.0	60.3	1.07
Flight	C/J	0.06	0.32	27.3	6049	21.3	1846	72.3	20.2	12.0	54.5	67.1	1445	-	-	79.1	14786	80.1	73380	-	-	72.9	109.9
Stock	C/J	55.3	0.01	68.4	2.30	28.0	9.25	64.8	0.33	64.8	2.27	21.1	65.4	20.6	5034	16.7	431.0	19.2	1337	17.4	1366	71.6	0.36

¹ The symbol "-" denotes that the method fails to finish within 1 day.

Evaluation: Ablation Study

Threshold update mechanism makes FusionQuery more robust.

Conclusion

Contributions

- A framework for on-demand fusion queries over heterogenous data

EFOR GUESTIONS

- An efficient knowledge graph matching framework
- A convergence-guaranteed data fusion algorithm
- An autonomous threshold update mechanism

https://github.com/JunHao-Zhu/FusionQuery

Thank you! Any Question?