
Junhao Zhu1, Yuren Mao1, Lu Chen1, Congcong Ge1,
Ziheng Wei2, Yunjun Gao1

1Zhejiang University, 2Wuhan University

FusionQuery: On-demand Fusion Queries
over Multi-source Heterogeneous Data

Conflicting Data is Everywhere

Conflicting Data is Everywhere

Even well-known data providers make
mistakes!

Possible Solution: Data Integration

Data extraction

Data cleaning

Schema mapping

Entity matching

Data fusion
(truth discovery)

Consistent
clean data

Multi-source
heterogeneous data

Data integration suffers from low
efficiency and flexibility

Interactive Application Example

Please generate a table regarding "united states house of representatives elections,
2004 in Ohio", the attributes are ["district", "incumbent", "first elected", "candidates"].
and the values under "district" column are ["Ohio's_1st_congressional_district",
"Ohio's_2nd_congressional_district“, "Ohio's_3rd_congressional_district"]. The values
under other columns are missing, which you should fill in with your knowledge.

Ohio's 1st Congressional District Election, 2004

Ohio's 2nd Congressional District Election, 2004

2004 United States House of Representatives
Elections in Ohio

Table synthesis by ChatGPT Conflict with data sources

Many applications (e.g., RAGs) need interactive speed.

A Better Way: FusionQuery

Name Nationality
B.Obama USA

… …

“…Barack Obama II,
born in USA…”

{“name”: “B.Obama”,
“nationality”: “Kenya”}

What is Barack Obama’s nationality? (Truth: USA)

Query
execution

Issue a query

Kenya USA

USA

Query-related data

…
Data fusion

(Truth discovery)

A Better Way: FusionQuery

Name Nationality
B.Obama USA

… …

“…Barack Obama II,
born in USA…”

{“name”: “B.Obama”,
“nationality”: “Kenya”}

What is Barack Obama’s nationality? (Truth: USA)

Query
execution

Issue a query

Kenya USA

USA

Query-related data

…
Data fusion

(Truth discovery)

① Query stage

② Fusion stage
Data fusion for query-related data

Process query over heterogenous data

FusionQuery: Query Stage
Challenge: how to support unified queries across heterogenous data

Key idea: frame heterogeneous query as KG matching

FusionQuery: Query Stage
Challenge: how to support unified queries across heterogenous data

Key idea: frame heterogeneous query as KG matching

However, KG matching is slow.
 Semantic and structural matching

are iteratively performed.
 BFS takes 𝑂𝑂(𝑛𝑛(𝑉𝑉𝑞𝑞 + 𝐸𝐸𝑞𝑞)(𝑉𝑉𝑑𝑑 + 𝐸𝐸𝑑𝑑)).

Query graph

𝑄𝑄(𝐺𝐺𝑞𝑞) 𝑣𝑣?

Data source 1

𝐷𝐷1(𝐺𝐺1
𝑑𝑑)

Data source n
𝐷𝐷𝑛𝑛(𝐺𝐺𝑛𝑛𝑑𝑑)

…

FusionQuery: Query Stage
Challenge: how to support unified queries across heterogenous data

Key idea: frame heterogeneous query as KG matching

Solution: Line Graph Transformation
 Convert triplets into nodes in a line graph.
 The time complexity is reduced to 𝑂𝑂(𝐸𝐸𝑞𝑞𝐸𝐸𝑑𝑑)

However, KG matching is slow.
 Semantic and structural matching

are iteratively performed.
 BFS takes 𝑂𝑂(𝑛𝑛(𝑉𝑉𝑞𝑞 + 𝐸𝐸𝑞𝑞)(𝑉𝑉𝑑𝑑 + 𝐸𝐸𝑑𝑑)).

Query graph

𝑄𝑄(𝐺𝐺𝑞𝑞) 𝑣𝑣?

Data source 1

𝐷𝐷1(𝐺𝐺1
𝑑𝑑)

Data source n
𝐷𝐷𝑛𝑛(𝐺𝐺𝑛𝑛𝑑𝑑)

…

FusionQuery: Query Stage
By line graph transformation, the problem is reduced to sub-problems.

Sub-structures of
data line graph 1

Structure of
query line graph

Unified Queries

Match scores

Match scores

Query graph

Data source 1

Data source n

… …

… …

Query line graph

𝐷𝐷1(𝐺𝐺1
𝑑𝑑)

𝐷𝐷𝑛𝑛(𝐺𝐺𝑛𝑛𝑑𝑑)
Data line gr

𝒢𝒢𝑛𝑛𝑑𝑑

Threshold 𝜏𝜏

nodes in query
line graph

Threshold 𝜏𝜏

𝑄𝑄(𝐷𝐷1) = (,)

 f

S b f

𝑄𝑄(𝐺𝐺𝑞𝑞) 𝒢𝒢𝑞𝑞 𝑣𝑣?

𝒢𝒢1
𝑑𝑑

𝑄𝑄(𝐷𝐷𝑛𝑛) = (, ,)

① Node-level semantic matching
 Nodes in line graphs are represented as

embeddings by PLMs (e.g., BERT).
 Matching is determined by similarity of

embeddings (decided by a threshold 𝜏𝜏).

② Graph-level structure matching
 Leverage efficient off-the-shelf non-attributed

graph matching algorithms.

FusionQuery: Query Stage
By line graph transformation, the problem is reduced to sub-problems.

Sub-structures of
data line graph 1

Structure of
query line graph

Unified Queries

Match scores

Match scores

Query graph

Data source 1

Data source n

… …

… …

Query line graph

𝐷𝐷1(𝐺𝐺1
𝑑𝑑)

𝐷𝐷𝑛𝑛(𝐺𝐺𝑛𝑛𝑑𝑑)
Data line gr

𝒢𝒢𝑛𝑛𝑑𝑑

Threshold 𝜏𝜏

nodes in query
line graph

Threshold 𝜏𝜏

𝑄𝑄(𝐷𝐷1) = (,)

 f

S b f

𝑄𝑄(𝐺𝐺𝑞𝑞) 𝒢𝒢𝑞𝑞 𝑣𝑣?

𝒢𝒢1
𝑑𝑑

𝑄𝑄(𝐷𝐷𝑛𝑛) = (, ,)

① Node-level semantic matching
 Nodes in line graphs are represented as

embeddings by PLM (e.g., BERT).
 Matching is determined by similarity of

embeddings (decided by a threshold 𝜏𝜏).

② Graph-level structure matching
 Leverage efficient off-the-shelf non-attributed

graph matching algorithms.
query-related data is collected, where values from
different sources may conflict with each other.

FusionQuery: Fusion Stage
Two key concepts in data fusion (truth discovery)
 Data veracity Pr(𝑣𝑣): the veracity Pr(𝑣𝑣) of a value 𝑣𝑣 is the probability that the

value 𝑣𝑣 is a correct result to the query.
 Source trustworthiness Pr(𝐷𝐷): the trustworthiness Pr(𝐷𝐷) of a data source 𝐷𝐷

is the probability that the source 𝐷𝐷 provides true values for queries.
 A value has higher veracity score if it is provided by a more trustworthy data

source, and vice versa (i.e., two scores are mutually relevant).

FusionQuery: Fusion Stage
Two key concepts in data fusion (truth discovery)
 Data veracity Pr(𝑣𝑣): the veracity Pr(𝑣𝑣) of a value 𝑣𝑣 is the probability that the

value 𝑣𝑣 is a correct result to the query.
 Source trustworthiness Pr(𝐷𝐷): the trustworthiness Pr(𝐷𝐷) of a data source 𝐷𝐷

is the probability that the source 𝐷𝐷 provides true values for queries.
 A value has higher veracity score if it is provided by a more trustworthy data

source, and vice versa (i.e., two scores are mutually relevant).

Goal: find values in query-related data with
highest data veracity as query results.

FusionQuery: Fusion Stage
Two key concepts in data fusion (truth discovery)
 Data veracity Pr(𝑣𝑣): the veracity Pr(𝑣𝑣) of a value 𝑣𝑣 is the probability that the

value 𝑣𝑣 is a correct result to the query.
 Source trustworthiness Pr(𝐷𝐷): the trustworthiness Pr(𝐷𝐷) of a data source 𝐷𝐷

is the probability that the source 𝐷𝐷 provides true values for queries.
 A value has higher veracity score if it is provided by a more trustworthy data

source, and vice versa (i.e., two scores are mutually relevant).

Goal: find values in query-related data with
highest data veracity as query results.

Drawback of existing data fusion methods

 Require a large amount of data to accurately estimate data veracity scores.
 However, what we can obtain is only query-related data (small amount).

FusionQuery: Fusion Stage
On-demand data fusion
 The data veracity Pr(𝑣𝑣) is approximated by its upper bound:

④ Source Trustworthiness Estimation

⑤ Data Veracity Estimation

update

update

Iterate until convergence

raise

update

Lower boundData veracity

Current
trustworthiness

Historical
trustworthiness

log Pr(𝑣𝑣) ≈ �
𝐷𝐷∈𝒟𝒟

Pr 𝐷𝐷 𝑣𝑣 log
Pr 𝑣𝑣 𝐷𝐷 Pr 𝐷𝐷

Pr 𝐷𝐷 𝑣𝑣

Pr 𝑣𝑣 𝐷𝐷 = � Pr 𝐷𝐷 , 𝑣𝑣 ∈ 𝐷𝐷
1 − Pr 𝐷𝐷 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 The source trustworthiness Pr(𝐷𝐷) is incrementally estimated:

Pr 𝐷𝐷 = �
𝑣𝑣∈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑄𝑄,𝒟𝒟

Pr 𝑣𝑣 Pr(𝐷𝐷|𝑣𝑣)

𝐷𝐷𝐷𝐷𝑜𝑜𝐷𝐷(𝑄𝑄,𝒟𝒟): query-related data, 𝑃𝑃𝑜𝑜ℎ 𝐷𝐷 : historical source trustworthiness, ℋ: the amount of historical query results

Pr 𝐷𝐷 𝑣𝑣 =
ℋ ⋅ 𝑃𝑃𝑜𝑜ℎ 𝐷𝐷 + ∑�𝑣𝑣∈𝐷𝐷𝑣𝑣 𝑄𝑄 Pr �̅�𝑣

ℋ + 𝐷𝐷𝐷𝐷𝑜𝑜𝐷𝐷 𝑄𝑄,𝒟𝒟

FusionQuery: Threshold Update

Sub-structures of
data line graph 1

Structure of
query line graph

Unified Queries

Match scores

Match scores

Query graph

Data source 1

Data source n

… …

… …

Query line graph

𝐷𝐷1(𝐺𝐺1
𝑑𝑑)

𝐷𝐷𝑛𝑛(𝐺𝐺𝑛𝑛𝑑𝑑)
Data line gr

𝒢𝒢𝑛𝑛𝑑𝑑

Threshold 𝜏𝜏

nodes in query
line graph

Threshold 𝜏𝜏

𝑄𝑄(𝐷𝐷1) = (,)

 f

S b f

𝑄𝑄(𝐺𝐺𝑞𝑞) 𝒢𝒢𝑞𝑞 𝑣𝑣?

𝒢𝒢1
𝑑𝑑

𝑄𝑄(𝐷𝐷𝑛𝑛) = (, ,)

Threshold 𝝉𝝉 affects the quality and quantity of query results

 A low threshold 𝜏𝜏 results on a low precision; A high threshold 𝜏𝜏 results on a low recall.

FusionQuery: Threshold Update
Our solution: automatically adjust 𝝉𝝉 inspired by meta-learning

Goal: find value with highest data veracity Optimization goal: max Pr(𝑣𝑣)

 Core idea: Adjust threshold 𝜏𝜏 by gradient descent.

Do a transformation to the condition:
Pr 𝑣𝑣 ≥ 𝜏𝜏 → Pr 𝑣𝑣 = 𝜏𝜏 + 𝜖𝜖𝑣𝑣 𝜖𝜖𝑣𝑣 ≥ 0

Substitute Pr(𝑣𝑣) in the estimation of Pr 𝐷𝐷 and get the gradient of Pr(𝐷𝐷):

∇𝜏𝜏 Pr 𝐷𝐷 = 𝐷𝐷𝐷𝐷𝑜𝑜𝐷𝐷 𝑄𝑄,𝒟𝒟 + �
𝑣𝑣∈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑄𝑄,𝒟𝒟)

Pr 𝑣𝑣 ⋅ 𝐷𝐷𝑣𝑣 𝑄𝑄
ℋ + 𝐷𝐷𝐷𝐷𝑜𝑜𝐷𝐷 𝑄𝑄,𝒟𝒟

Update 𝜏𝜏 by the gradient:
𝜏𝜏 = 𝜏𝜏 − 𝜃𝜃 sgn ΔPr 𝐷𝐷 ⋅ ∇𝜏𝜏Pr(𝐷𝐷)

Evaluation Setup
Datasets Baselines
 Four real-world datasets with heterogenous

data types

 Offline batch data fusion methods:

 Naïve method: Majority Voter

 Iterative methods: TruthFinder, DART

 Optimization method: CASE

 Probabilistic method: LTM

 Adapt them to on-demand data fusion variants

Evaluation: Performance
FusionQuery achieves better accuracy and comparable runtime

compare to on-demand data fusion baselines.

Evaluation: Performance
FusionQuery outperforms offline data fusion baselines

in both effectiveness and efficiency.

Evaluation: Ablation Study
Threshold update mechanism makes FusionQuery more robust.

Conclusion

Contributions
- A framework for on-demand fusion queries over heterogenous data
- An efficient knowledge graph matching framework
- A convergence-guaranteed data fusion algorithm
- An autonomous threshold update mechanism

Thank you! Any Question?

https://github.com/JunHao-Zhu/FusionQuery

	FusionQuery: On-demand Fusion Queries over Multi-source Heterogeneous Data
	Conflicting Data is Everywhere
	Conflicting Data is Everywhere
	Possible Solution: Data Integration
	Interactive Application Example
	A Better Way: FusionQuery
	A Better Way: FusionQuery
	FusionQuery: Query Stage
	FusionQuery: Query Stage
	FusionQuery: Query Stage
	FusionQuery: Query Stage
	FusionQuery: Query Stage
	FusionQuery: Fusion Stage
	FusionQuery: Fusion Stage
	FusionQuery: Fusion Stage
	FusionQuery: Fusion Stage
	FusionQuery: Threshold Update
	FusionQuery: Threshold Update
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	Conclusion

